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Equations of vibration of a two-dimensionally layered plate strictly
based on the decision of various boundary-value problems

In this paper, the theory of oscillation of laminated plates of building structures is developed, which is
rigorously grounded in the formulation of various boundary-value oscillation problems. When studying the
oscillation of plates, the exact three-dimensional problem is replaced by a simpler, two-dimensional problem
for the points of the middle plane of the plate, which imposes restrictions on the external conditions. These
limitations boil down to the fact that external forces can not be high-frequency. Since the general equations
of plate oscillation, the resulting wound contain derivatives of any order in terms of coordinates z, y and
time t, are structured and therefore not suitable for solving applied problems and performing engineering
calculations. For this, it is necessary to formulate approximate boundary-value oscillation problems.
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Introduction. Materials used in building structures have elastic and viscoelastic properties, are anisotro-
pic, multilayered and with other mechanical characteristics. Flat elements are components of many designs.
The construction of general and approximate equations of oscillation of various types of flat elements presents
an actual problem in the development of the theoretical foundations for calculating building structures and
construction in general. Such problems include the problems of improving the models of the nonstationary
nature of structures and their elements, the materials of which exhibit complex mechanical, rheological properties
inherent in various building structures under the influence of various external factors.

In this paper, the theory of oscillation of laminated plates of building structures is developed, which is
rigorously grounded in the formulation of various boundary-value oscillation problems.

Main part. Suppose that an infinite plate in thickness 2h; is under the surface of a semi-infinite medium
at depth (hg — hq) . Plane XY will be placed in the middle plane of the plate at z = 0 . The axis OZ is
directed toward the outer surface of the outer layer. Denote the parameters of the layer by the index «1» , the
upper layer [—oo < (z,y) < 0o;hy < z < (hg — h1)] will be denoted by the index «2», and the lower half-space
[—o0 < (z,y) < 00; —hy < 2z < 0] by the index «3».

We assume that the materials of the upper layer, plates and bases are homogeneous, isotropic, exhibit
viscous properties.

We introduce the potentials @) and U of longitudinal transverse waves in accordance with the well-known
formulas

" = grad®® + roteW, (1)

where @) — vectors of displacement of points in a layer, plates and bases.
In the potentials ®¢) and ¥ | the equations of motion of the layer, the plate and the base take the form:

Rt S R4

N(AdW) = p=e, My(ATWD)) = gy 2
i ) =P Ml ) =P (2)
where the operator IV; is:
N; = L; + 2M;.
A-three-dimensional Laplace operator
02 0? 02
A=—+—=+—

L;, M; — viscoelastic operators.
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By the Helmholtz theorem, in the absence of internal sources, the vector potential U of transverse waves
must satisfy the condition:
divs® = 0, (3)
which is the closing equation for finding four unknown potentials ®(), \I/(ll), \Ilg), \I/gl).
The displacements u, v, w, deformations €;; and stresses in Cartesian coordinates through the potentials
® and ¥ of longitudinal and transverse waves are determined from known formulas.

In [1] it is shown that the boundary problem oscillation plate located beneath the surface, reduces to a
solution of integro-differential equations (2) at the boundary and initial conditions: the outer surface (z = hg)

0@ = [ (z,y,t); o) = fE @,y 0); (4)

Jz

at the contact boundary, the top layer-plate (z = hy)

zz

R T B O A 5)
at the plate boundary, the base (z = —hq)

o) = ol + 13 (a,y.1);
o) =0 o) + D@yt =0

w® =w® 4 (@, y,t) (=) (6)

In addition, the damping conditions at infinity must be satisfied, i.e. z = —o00  ®®) = 0;
3 3 3
v = ol =0l 0. (7)
The initial conditions are zero, i.e.

oo 9Tl

W) — Z 3
ot ot

=¥=0, (1=13), t=0 (j=123). (8)

The problem of oscillation of a plate in a differentiable medium is reduced to the study of equation (2),
which satisfies the boundary conditions (4), (5), (6) and the initial conditions (8).

When studying the oscillation of plates, the exact three-dimensional problem is replaced by a simpler, two-
dimensional problem for the points of the middle plane of the plate, which imposes restrictions on the external
conditions. These limitations boil down to the fact that external forces can not be high-frequency.

The problem formulated above is solved by applying Fourier transforms in X and Y and Laplace transforms
in t.

The general solution formulated by the three-dimensional problem with zero initial conditions was found
in [1], and general expressions for displacements and stresses were obtained.

o 2 ) 2
W _ (n) 9"\ o 9 (v w\] =
u Z{KA? +01Q1”ax2>U +01Q1”ax( oy V) @it

n=0

- (n) o _ ENEa Oy 2
e 0 2n
W) _ (n) 0) 9 (U w2
v nz_o{[( +C1Qun s o )V +C1Qin- 3 ( o W i)t
& & o (oU®  wow)] 2
+ Z { [( D1Q1n ) v 1Q1n < 5 T Ay Wy e

o0

0 av(l) 2n+1
o — (n) M\ @ w (oU 2
w E_O:{[(AQ F QA )W QA < 5 oy ﬂ (2n+1)!}+
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where the operators )\gl) and )\gl) are equal
2
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where the unknowns UM, V(1) W(l) are the tangents and normal displacements of the points of the plane z =0

and the points of the middle plane of the plate, U (1), Vl(l), W) — the values of the derivatives along Z the
transverse displacement or the values of the strain type (the deformation at Z = 0).

In this case, the operators )\52), )\gl) are two-dimensional integro-differential, describing the propagation of
longitudinal and transverse waves in the plane z = 0.

To find the unknowns UM, V(1) VVl(l)7 Ul(l)7 Vl(l), WM we have the boundary conditions (4)—(6).

Using expressions (9) and (11) for stresses and displacements, substituting these expressions into the
boundary conditions (4)—(6), equations are obtained for determining the unknown functions that are general
solutions of the formulated problem and describing the vibrations of the three-dimensional medium.

To study the oscillations of rectangular plates in the plan, it is necessary to formulate boundary value
problems.

Under the boundary-value problems of oscillation of a bounded plate in a plane located below the surface,
we mean the derivation of the oscillation equation for the plates; the formulation of the boundary conditions
along the edges of the plate and the initial conditions for the functions.

Since the general equations of plate oscillations obtained by the author [2] contain derivatives of any order in
coordinates x, y and time ¢, are structured and therefore not suitable for solving applied problems and performing
engineering calculations. For this, it is necessary to formulate approximate boundary-value oscillation problems.

In [3] an approximate equation of the transverse vibration of the plate was obtained for the transverse
displacement Wl(l) of the middle plane of the plate in the form

92W. (1) AW (1) 92W. (1) ) ) )
A = | T A2 | a— | T As | & =5 | T 48P W) + PWVY) = (2, ), (12)

where A;, P, ®(x,y,t) are equal

Ay = pitM ™ hy + paNy (ko — hy);
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LR AN
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w4219 [n N ) o) (2 (o~ homa | (13
{ | (i) ta =}

The reaction of the base P, is determined by the formula (13), contains both the velocity of the transverse
displacements of the plane z = 0 and the odd time derivatives.

Thus, the law of resistance P(Wl(l)) (13) explicitly contains the parameters of the plate, the base and the
upper layer.

Despite the fact that equation (12) is approximate, it is rather complicated. The operators (13) contain all
the parameters and operators that characterize both the mechanical and rheological properties of the materials
of the plates, the layers and the base and their thickness.

We derive the boundary conditions along the edges of the rectangular plate. For simplicity, let us consider
a plane boundary x = const, for boundary conditions y = const, it is easy to write from the conditions for
x = const, and for an arbitrary curvilinear boundary, using known formulas, through the boundary conditions
at x = const, y = const.

The boundary conditions will be derived from the theory of thick plates or plates. Based on their boundary

conditions on the surface of the plate z = h or z = —h obtain the dependence of the quantities ugl), Vl(l) on the
transverse displacement Wl(l).
(1) 1)
W _ oWy v _ oW 14
Uy or ’ 1 ay . ( )

Hard edge fixing £ = const. As is known from the theory of thick plates, there are two possible types of
such fixation

ugl) = vgl) = wgl) =0 (15)
or
ugl) = w%l) = cra(cly) =0. (16)
Hingelessly supported edge x = const.
There are also two types of fastening for this fastening.
u(ll) = wgl) =) =0 (17)
or
wgl) =ol) = Ug(cz) =0. (18)

A stress-free edge.
For a free edge, the strict conditions have the form

og(c;) = O'g(tlz) = cr%) = 0. (19)

The rigid and hinged fastening is fairly simple and, using approximate expressions (13) and (15), for
transverse displacement we obtain the boundary conditions:
for rigid fixing
ow

1
Wl(): ox

=0, (20)
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for articulation

= 0. (21)

Consider a free edge. Using the first two conditions (19) and approximate expressions for the displacements
u, v, w and the stresses 0;; obtained in [6], we obtain

2177(1) 2177 (1) 2177 (1)
@+30) 0 1 (14 D) [23 v (3 it )]0

Ox? Oy ot?

0 o (2wl
% [mwl —pM~1 ( at; =0. (22)

Substituting the second derivative of Wl(l) with respect to time from the first expression (22) to the second,
we obtain

2177(1) 2177(1) 211-(1)
Wl 1 -1 9 Wl —_0-
(2+3D1)W+(1+D1)T/2 p(1+ D1)M < o2 =0;
Pw
4 =0. (23)

The third of the conditions (19) gives 83;;/ gfl) = F(t) , that is, in the first approximation avgi” does not
depend on y and is determined after solving a particular problem.

The first term in (23) differs from the classical one, and the second term coincides. The first condition (23)
takes into account the deformability of the edge over time and is analogous to the d’Alembert principle for the
dynamics of a material point.

The general initial conditions for a plate as a three-dimensional body have the form:

1 1 1

. = . 24
ot ot ot P (¢=0) (24)
Using the relations (14) for displacements, we have
ow 0 23
1y "1 D 7Aw(1)7.
b ox © * 'z L6’
ow 0 2
 _ _ 1 D ZAwDZ . 25
v R el s (25)
27 (D] L2
w® — w4 2D, — 1)AW® 4 (1 - Dy)pr—12 ;;/21 =

In the beginning, we consider the initial conditions from (24) for the displacements themselves. Then from
expressions (25) we obtain

owl 0

—_0- LA Z .
oz 0 Oz " 0
(1)
81/;/; = 0; %Awf”: ; (26)
82w(1)
w =o; 5 =0 (27)

Differentiating (25) with respect to u, using the second triple of initial conditions (24), we similarly obtain

ow”  gpwl)
o o

~0. (28)
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The initial conditions (26) and (27) give the necessary number of initial conditions for the transverse
displacement Wl(l) of the fourth-order coordinate and time satisfying the hyperbolic equation.

Conclusions. The derivation of the boundary and initial conditions for the plate under the surface completely
coincides with the analogous boundary initial conditions for the free plate, obtained in [2].

Thus, in formulating boundary value problems, the boundary conditions do not depend on the presence of

the upper layer and the lower base.
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A.ZK. Ceiitmyparos, B.M. Hypmanosa, H.K. Meneybaes

OPTYPJIl HIETTIK ecenTepaiH KONbLIBIMbIMEH KATaH Heri3elireH eKi
eJIIIeM/al KaTIapJibl IJIACTUHKAHBIH, TepOeJjic TeHaeyJsiepi

Maxkasaza Tep6esticTis 9pTYpJIi IETTIK eCenTepiHil, KONBIIBIMBIMEH KATaH HETI3/1e/ITeH KYPBLIbIC KOHCTPYK-
USIIAPBIHIAFBl KATIIAPJIbI IJIACTUHKAJIAP/IBIH, TepOesIic TeOpHUsiChl KapacThIpbLIAbl. [lnacTura Tepbesicin
3epTTereH/Ie J19J1 YIII OJIIEM/Il eCell IJIACTUHKAHBIH OPTa YKA3bIKTHIFBIHBIH HYKTEJIEP] YIIIH CHIPTKBI 9cepJiep-
re MIeKTeyJIep KOSITHIH aca KapalaibIM, €Ki OJIIIeM/Ii eCellKe aJIMacThIPBLIIbI. ByJT meKTeyaep CbIpTKbI dcep-
JIEPIIiH, >KOFaPbI >KALTIKTe 6018 aJIMaiTHIHABIFEIHA KeaTipiieni. AIabHIa aJbHFaH IIACTHHA TepOeiciHin
2KaJIIbl TEeHJIEYJIEPIHIH T, Y KOOpAUHATAJIAPBI KoHe ¢ yaKbIT OOMBIHINA Ke3 KeJINeH PETTi TYbIHJIbLIAph 6ap
OOJIFAHIBIKTaH, KYPBLIBIMbBI OOMBIHINIA KYPesi 6ok TabbLiaabl. COHABIKTAH KOMIaHOAIBI €CENTEP/Ii IMIbl-
Fapy KoHE MHXKEHEPJIK ecenTeysep Kypridy yimiH onap Kaxker emec. Our yimiH TepOesicTiH, XKybIK, MeTTIK
€CcenTepid TY>KbIPBIMJIAY KEePeK.

Kiam cesdep: Korapbl KALTIK, KOJAAHOAIBI €CEIl, ©3T€PIiCKe VITBIPAUTHIH, CEPIIM/II OpTa, TepOeic Teopusi-
CBI.

A.ZK. Ceitrmyparos, B.M. Hypmanosa, H.K. Meneybaen

YpaBHeHnd KOJeOaHUA AByMEPHOI CJIOUCTOI MJIACTUHKHN, CTPOTO
000CHOBaHHBIE TOCTAHOBKOM Pa3JIMYHBIX KPAeBbIX 33aJ1a4

B craTbe pazsuTa Teopus KogebaHUs CIOUCTHIX IVIACTUHOK CTPOUTEIBHBIX KOHCTPYKIUL, CTPOro 060CHOBA-
Hasl TIOCTAHOBKOMN Pa3/IMYHBIX KPaeBbIX 3a]a4 Kosebanusi. [Ipu ncciiemoBannm KojebaHusl MIACTHH TOTHAST
TpexMepHas 33/1a9a 3aMeHsIeTCsi 0ojIiee MPOCTOM, IBYMEPHOM [IJIsT TOYEK CPEIMHHON IIJIOCKOCTHU IIJIACTUHKH,
YTO HAKJIAJIBIBAET OIPDAHMYEHUs] HA BHEIIHHWE YCJIOBUsl. DTU OTPDAHMYEHUs CBOJATCA K TOMY, YTO BHEIIHHE
YCHUJIUsI HE MOTYT OBITh BHICOKOYACTOTHBIMU. TakK Kak obIue ypaBHeHMsT KOJIeOaHUs TIJIACTUH, IOy YeHHbBIE
pamee, CoZlepKaT MPOU3BOIHBIE JTIOOOTO TOPSIIKA 110 KOOPAMHATAM T, Y U BPEMEHU t , CJIOXKHBI TIO CTPYKTYpe
¥ IIOTOMY He IPUTOJHBI JJIsl PEIleHNs IPUKJIIAJHBIX 3834 U IPOBEJIEHNs NHKEHEPHBIX pacdeTos. s sToro
HeO6X0MMMO CPOPMYTUPOBATEH MPUOINKEHHBIE KPAaeBble 3a/1a4r KOJIEOAHS.

Kmoueswie caosa: Bubpanuu, miIacTUHbL, JJepopMUpyeMast Cpejia, Teoprsl KoJiebaH!s CJIOUCTBIX IIJIACTHHOK.
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