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On non-degenerate singular points of normalized Ricci flows
on some generalized Wallach spaces

The present paper devoted to problems of Riemannian geometry and planar dynamical systems. In particular
we study non-degenerate singular points of normalized Ricci flows on special type of generalized Wallach
spaces. Our main goal is to prove the absence of such points. The main idea is based on a special set QQ in-
troduced in [1, 2] for studying general properties of degenerate singular points of Ricci flows. More concrete-

ly, for solving the mentioned problem we use the facts that the set (0,1/2)3 NQ is connected and the set

(O,l / 2)3 \Q consists of three connected components as it was proved in [3].
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Introduction

In the present work we consider the autonomous system of nonlinear ODEs obtained in [1]:

dx dx x
1 2 3
d = f(x,%,,X3), i =g(x,x,,x5), i =h(x;,x,,x,),
where x, =x,(t) > 0;
X X X3 .
f(xl,xz,x3)=—1—a1xl£ — — J+x1B,
XpXy XXy XX,
Xy X3 X .
g(xl,xz,xS)z—l—azxZL - - j+sz,
XXy XXy XXy

X X, X
_ 3 1 2 .
h(x,,x,,x,) =—1—a,x, - - +x,B;
XXy XXy XXy

-1
Bz:( L, x » x Ml+i+ij , a,e(0,1/2], i=1,23.

a\ X ayX,  G3X; XX XX3 o XX, a  a, a

Recall that the system above arises at investigations of Ricci flows on generalized Wallach spaces (see
details in [1, 2]) and could be equivalently reduced to the system of two differential equations of the type as
it was proved in [1]:

&zg(xl,xz), )

dx, -
dt _f(xpxz)» dl

where

% as

J;(xlaxz) = F(x,%,,0(x,,X,)), &(x;,%,) =g(x,,X,,0(x,,X,)), O(x;,%,)=x" x,“.
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Let
n o m o k

4 2(l+m+n—2)’ ’ 2(l+m+n—2)’ ’ 2(l+m+n—2)'
where n,m,k e N.

The case (a,,a,,a,)=(a,a),a;) corresponds to the special family of generalized Wallach spaces
SO(k+m+n)/ (SO(k) x SO(m)x SO(n)) as it was shown in [4] (a more detailed information concerning

geometric aspects of this problem could be found in [4-8]).
The main result of this work is contained in the following theorem.
Theorem 1. Let m=k. Then the system (1) has no non-degenerate stable nodes at

(al,az,a3)=(af,a2,a§’).
Recall some well-known definitions of the qualitative theory of ODEs: (xlo ,xf) is called a non-
degenerate stable node of (1) if
) f=g=0at(x.x));
2) A, <0, A, <0, where A

J=J(x1°,x§)=[{x‘ fx]

g, &.

»A, are the eigenvalues of the Jacobian  matrix

ptvo

calculating by the formula 2, :TG’ o :=det(J); p:=trace(J),

("1”‘2):("10”53)

2
c:=p —40.
The paper is organized as follows. In Section 1 we reformulate some well-known facts. In Section 2 we
prove Lemmas 2, 3 and 4. In Section 3 we prove Theorem 1.

1. Preliminaries
In [1] the special set
Q'= {(al,az,a3) ek’ ‘ the system (1) has at least one degenerate singular point } was introduced and
the following lemma was proved.
Lemma I (Lemma 4 in [1]). If a point (a,,a,,a;) with a,a, + a,a, + a,a, #0 and a,,a,,a, #0 lies in the
set Q', then Q(al,az,a)zo, where
O(ay,a,,a) = (2s, +4s; —1)(64s; + 64s; +8s; +12s) — 65, +1+
+240s,s7 —240s,5, —153s55, —4096s; + 60s; +758s3) —
—8s,(2s, +4s, —1)(2s, =325, —=1)(10s, + 325, = 95)s,— 2)
—16s7 (13525, + 640s,s, +1024s; —320s, + 5257 )s; +
+64(2s, —1)(2s, =325, —1)s; +2048s,(2s, —1)s5;
s, =a,+a,+a,, s, =aa, +aa,+a,a,, S, =a,a,a,.
0(ay,a,,a;) is a symmetric polynomial in a,,a,,a, of degree 12. Therefore, as it was remarked in [1]
the equation Q(a,,a,,a)=0 (without the restrictions a,a, + a,a, +a,a, #0 and a,a,a, #0) defines an real
algebraic surface in R® that we will denote by Q according to [1]. From Lemma 1 we see that Q' < Q.
By [3] in the set (0,1 / 2)3 N Q is connected and there are exactly three connected components in the set

(0,1/2)3 \Q. Preserving the original notations of [1] denote by O,, O, and O, the components in

(0,1/2)3 \Q containing the points (1/6,1/6,1/6), (7/15,7/15,7/15) and (1/6,1/4,1/3) respectively.
In [2] the following theorem was proved.
Theorem 2 (Theorem 7 in [2]). For (al,az,a3) € O, the following possibilities for singular points of the

system (1) can occur:
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i) If j=1 then there is one singular point with & > 0 (an unstable node) and three singular points with

8 < 0 (saddles);
ii) If j=2 then there is one singular point with &> 0(a stable node) and three singular points with

8 < 0 (saddles);
iii) If j =3 then there are two singular points with 5 < 0 (saddles).

In [2] the following question was formulated: let (af,af,ag) be any triple in (0,1/2)'\ Q. Is there a

way to decide on which connected component O,, O,, or O, does this triple belong to? The answer was af-
firmative according to the following remark.

Remark 1 (Remark 8 in [2]). Consider first the simplest case where alo = ag = aé) =:a". Then obvi-
ously (alo,ag,ag)e O, for a’ <1/4 and (alo,ag,ag)e 0, for a’ >1/4 (recall that (1/4,1/4,1/4) is a
very special of Q).

Assume now that alo : ag : a;) #1:1:1. Then it is easy to find (solving an algebraic equation of degree at
most 12 with respect to ¢) the intersection of () with the interval [ containing points of the form
(a,,a,,a,)= (alot,agt,aft), where 0<?¢<1. This means that we need to give numerical values to

(alo ,ag ,a;) ) and then solve the corresponding equation with respect to ¢ (it could be done approximately
e.g. by Maple or by Matematica).
From simple geometric arguments we have the following: If the number of intersection points is 0, 1,

or 2, then (alo ,ay,a; ) belongs to O,, O,, or O, respectively. For instance, if all solutions of the corre-
sponding equation are complex, then the number of intersection points is 0 and (alo , ag , af ) €0,.

For our aims we need also the well-known Sturm's theorem.

Theorem 3 (Sturm, [3]). If the real numbers a and b, a <b, are not the roots of a polynomial f(x)
which does not have any multiple roots, then W(a) > W (b)and the difference W(a)—W(b) is equal to the
number of real roots of f(x) in the interval between a and b, where W(c) denotes the number of varia-
tions in sign in the sequence

fo(X), i(X), ..., f,(x), x=c.
Remark 2. Recall that the Sturm sequence f,(x), f,(x), ..., f,(x) may be constructed as following:
f;) ::f, ﬂ ::ﬁ)’, f2 :=—rem(f0,f1), ’O :_rem(]ps_l,f;),

where rem( f, |, f;) means a remainder of the polynomial division of f, , by f..

2. Auxiliary results

Return to the family of generalized Wallach spaces SO(k +m+ n)/ (SO(k)x SO(m)x SO(n)).
The case m=k=n, ke N.
Lemma 2. If m = k = n then (al,az,a3) can belong only to O,.
Proof. Substituting (a1 7PN ) = (alot, at, agt) into Q(a1 ,a,,a, ) according to Remark 1 we get the
following polynomial of degree 12
o(t) = Q(alot,agt,a;’t) _ (kt+3k - 2)* (2kt -3k +2)° .

(3k—-2)" ©)

As the calculations show the equation p(¢) =0 has the unique real solution ¢ = of algebraic

3k - 2)
2%k

multiplicity 4. It is clear that the condition 0 <7 <1 could be satisfied only at k=1, however
a, =a, =a, =1/2 in this case. The lemma is proved.

The case m=k, n#k, k € N, Consider the case where two of a,'’s are equal in (3).
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By the same way as in proof of Lemma 2 we get the polynomial of degree 12
p()=0(a/t,ajt,alt) = p (1) p,()) P (1), 4
where
p,(t) =—nt—(n+2k-2);
P, () =2n(k +n)t* = 2(k +n)(n+2k —2)t + (n+ 2k - 2)*;
pi(t) =2k (k+n)t —(n+2k)(n+2k -2y t+(n+2k-2)".
Obviously that p,(¢) has only negative roots: —(n +2k—2)n"' <0.
Hence our purpose is to find conditions on 7, k ensuring the polynomial p,(¢)p,(¢) distinct real roots
from the interval (0,1). We will consider the subcases n <k and »n >k separately.
The subcase n < k.
Lemma 3. Let m =k, n<k. Then the following assertions hold for the polynomial p(¢) given by (4):
(HIfn< 2\/ﬁ, then p(¢) has a unique zero ¢* €(0,1);
Q) 1f 2Wk—1<n<k then p(t) has no zeroes between 0 and 1.
Proof. Roots of p, (). It is easy to show that the quadratic equation p,(¢)=0 has the following two re-

. k+n—E -n’ o ktn+NE -0’
= (n+2k-2), t7 =
2n(k +n) 2n(k + n)
Note that the condition 0 <™ <1 is equivalent to the inequality
[ERp 2n(k +n) C(k+n)= (k+n)(n+2-2k)
n+2k-2 n+2k-2
which has no solution since n+2-2k=(n—k)—(k—2)<0 at k>2. Therefore there is no values of
n,k(n<k) such that ™ € (0,1).
Consider the root ¢*. Since " >0 for n <k then the condition 7" <1 leads to the inequality
e — > (k+n)(n+2-2k) 20
n+2k-2
which admits the solution 7 <2+vk—1. Since 2vVk —1<k (with equality only at k£ =2) then the condition
n <k is preserved too.
Roots of p,(t). Further we will prove that p,(t) has no zeros in the interval (0,1) if n<k.

al roots

(n+2k-2).

As the calculations show the explicit formulas for roots of the cubic equation p,(t)=0 does not allow
further in-depth study of real roots. Moreover, since we are interested only in detecting of boundaries of such
roots, then the Sturm's theorem can provide some opportunities.

To use Theorem 3, at first, we will show that p,(¢) has no multiple zeroes. Reduce p,(t)=0 to the
form £ + pt+ g =0, where

pi=—(n+2k)(n+2k-2)(2k*(k+n))" <0;
q=(n+2k-2)2k*(k+n))™" >0.

The discriminant of the last qubic equation is

D ':p_3+q_2 _ _(n+2k -2)°(2n* +14nk +11k*)(n - k)
T 27 4 432k° (k + n)’ '

As we know from algebra multiple roots are possible only at D =0 that never can occur because of
n # k. In particular, D >0 for n <k and p,(¢) has an unique real root (and two complex roots).

At second, we will check the inequalities p;(0)# 0, p,(1)# 0. Itis clear that p,(0)=(n+2k—2)’ #0.

Easy calculations show that

ps(D==2n" +2(k =2’ n+2(k> —4k> + 8k —4) =-2(n—n,)(n—n,),
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where

. (k=2) —k\J(k=2)* +4 <0:

1 4

2
_ (k=2 ke (k=2 44
) >k,

n,: &)
Since n <k then n<n,, and consequently we have p,(1)#0.
Hence it is reasonable to construct the Sturm sequence f,, f,, f,, f; for p,(¢) using Remark 2:
o) = p;(),
fi(6) = f(t) =6k (k +n)t* —(n+2k)(n+ 2k —2)*;
_ 2
L) =rem(f,, f) = 2(“2")('3”2" 2 (nr2k -2y
(n+2k—2)"(2n° +14nk +11k*)(n— k)
)= , )= . 6
S5 =rem(f,, f3) 2t 2k (6)
Now we are ready to calculate the values W (0) and W (1). It is obvious that W (0) =1 (see Table 1).
Table 1
Values of /W (0) in the case n <k
t=0 sgn (/,(0)) | sgn(£(0) | sgn(/,(0) | sgn(/(0) w(0)
n<k + - — - 1
At ¢t =1 we have
So)= ps(1) ==2(n—n)(n —n,); (7
£i()==2k =2(3n-8)k* =2(3n—2)(n - 2)k —n(n—2)*; ®)
n+2(k-3))(n+2k-2)
£(0)=— (n+2(k =3)X )y ©)

3
Obviously, f;(1)<0 and f;(1)>0since n <k <n,. Signs of f (1), f,(1) will be detected from the fol-

lowing cases.

Case 1. Let k=2, n=1. Then f,(1)=27, f,(1)=3.

Case 2. Let k=22, n<k. Then f,(1)<0. In this case we do not need to detect the sign of f, (1) since
for any possible event (+,—, or 0) only one sign change expected in the second row of Table 2.

Thus from Tables 1,2 we get W (0)—W (1)=0. Using Theorem 3 we conclude that there is no roots of

p,(t) in the interval (0,1) whenever n < k.

Table 2
Values of W (1) in the case n <k

t=1 sgn (f,(1) sgn (f,(1)) sgn (f,(1) sgn (f5(1) W)
k=2,n=1 + — — _ 1
k>3, n<k + +tor 0 — — 1

The lemma is proved.
The subcase n > k.
Lemma 4. Let m =k, n> k. Then the following assertions hold for the polynomial p(#) given by (4):

(1) If k<3 or k=24, k<n,<n then p(¢) has an unique zero ¢ € (0,1);
(2)If k=4, k<n, <n then p(t) has zeroes between 0 and 1, where n, is given by (5).

8 BecTHuk KaparaHguHckoro yHuBepcuteTa



On non-degenerate singular points...

Proof. Roots of p,(¢). It is clear that p,(t) has no real zeros at n> k. Roots of p,(t). It is clear that
W(0)=0 (see Table 3).

Values of W (0) in the case n >k

Table 3

sgn (/,(0))

sgn (/1(0))

sgn (/2(0)

sgn (/5(0))

w(0)

+

2

Detail analysis in (6)—(9) show that (1) can take signs depicted in Table 4. Note that n, <n for £ <3

(see (9)).
Table 4
Values of W (1) in the case n >k
t=1 sgn (/f,(1) sgn (£ (D) sgn (/,(1) sgn (f;(1) w1
k:1, n=2 — + + + 1
k=1, n=3 - — + + 1
k=1, n=4 - - 0 + 1
k=1, nx>5 — _ _ + 1
k=1, n>3 — _ _ + 1
k=1, n>4 _ — — + 1
k=24, k<n,<n - - - + 1
k=4, k<n<n, + _ _ + 2

Therefore W(0)—W (1) =0 can take only the values 0 or 1 in the case n > k. The lemma is proved.

3. Proof of the main result

Proof of Theorem 1. From Lemmas 2, 3 and 4 we get the following: if m=k then any triple

(a,a),aj) determined by (3) can belong only to either O, or O,. Therefore, according to Theorem 2 the
normalized Ricci flow on generalized Wallach spaces of the type SO(k + m + n)/(SO(k)x SO(m) x SO(n)),
m =k, cannot have non-degenerate stable nodes. Theorem 1 is proved.

Remark 3. When this paper has been written the first author was informed about the recent preprint [9]
where the classification of generalized Wallach spaces was obtained. The mentioned classification and Theo-

rem 2 provide a general result concerning the classification of non-degenerate singular points of the system
(1) for all generalized Wallach spaces.
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H.A.O06wues, 3.0.TypTkynbaeBa

Keii0ip xannbuianran Yo/uiax KeHIiCTIKTepiHaeri HOpMaJaacThIPbLIFaH Puuun
arbIMJIapPbIHBIH 63relle/ieH0ereH epexine HyKTejaepi TypaJjibl

Makana puMaHJBIK TEOMETPHSI MEH )Ka3bIK AMHAMUKAJBIK JKYHelnep ecenrtepine apHanra. [lepbec xargaiina
JKaJINMBUIAaHFAH YOJUIaxX KEHICTIKTEpiHIH apHAibl TUOTEpiHAeTI HOPMaJIACTHIPEUIFAaH PHdun arpIMIapbIHBIH
e3remieseHOCTeH epeKile HyKTedepi 3epTrenai. bacTel MakcaT — OCBIHIAH HYKTeJIepIiH OoiMayblH
nornernney. Herisri unmes Pudum arpIMIapbIHBIH ©3TelICNCHIeH epekilie HYKTelepiH 3eprrey yuuiH [1, 2]
JKYMBICTapbIHIA EHTi3iareH (0 O>KMBIHBI KAacHETTepiH NalijanaHyra HeTi3fenreH. AHBIFBIpaK aiTKaH[a,

KOWBUIFaH ecenTi ey yurH, [3] jKyMbIChIHIA INeACHICHACH, (0,1/2)309 JKUBIHBI TYTac, ai

(0,1/2)’ \Q UbIHBI YII TYTACTBIK KOMIIOHEHTACHIHAH TYPATHIHBI Al aTaHbLIA b

H.A.Ab6ues, 3.0.TyptkynbOaeBa

O HeBBIPOKIEHHBIX 0COOBIX TOUKAX HOPMAJIN30BAHHBIX NOTOKOB Puyun
HA HEKOTOPBIX 00001IIEHHBIX MPOCTPAHCTBAX Y 0JL1aXa

Crathst IOCBsIIEHA NpoOIeMaM PUMaHOBOH I'€OMETPHU U IUIOCKUX JUHAMHUYECKHX CHCTeM. B wactHOCTH,
H3y9deHBl HEBBIPOXKACHHBIC OCOObIe TOYKM HOPMAIM30BAHHBIX IIOTOKOB PHYuM Ha cCrenuaigbHBIX THITAX
0000IIeHHBIX IPOCTPAaHCTB Yoiuiaxa. ['TaBHast menb — J0Ka3aTh OTCYTCTBHE TakuX Touek. OCHOBHAsS muest
3WXKJIETCS HA UCIIOJIb30BAHMM CBOMCTB CIICIIMANBHOIO MHOXecTBa (), BBEICHHOIO B [1, 2], w1 u3ydeHus
00LIMX CBOHCTB BBIPOXKICHHBIX 0COOBIX TOUEK NMOTOKOB Pruuun. OTMEUEHO, YTO VIS PEIICHNs OCTaBICHHOM
3ajlauM MCToJb3yeTcst To, uto MuoxkectBo (0,1/2)° NQ cBasno, a muoxkectso (0,1/2)’\Q cocrouT u3

TpeX CBSI3HBIX KOMIIOHEHT, KaK J0Ka3aHo B [3].
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