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A polynomial algorithm for the braid double
shielded public key cryptosystems

We propose new provable practical deterministic polynomial time algorithm of cryptographic analysis for
the braid Wang, Xu, Li, Lin and Wang «Double shielded public key cryptosystems», where the authors
recommended the Artin braid groups B, as platforms for proposed protocols. We show that a linear
decomposition attack based on the decomposition method introduced by the author works for the image
of braids under the Lawrence-Krammer representation by finding the exchanging keys in the both two
main protocols by Wang et. al. These keys can be effectively computed in their original form too. Thus the
protocols proposed by Wang et. al. are vulnerable.
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Introduction

In this paper we discuss, following [1, 2|, a new practical attack on the two main protocols proposed
in [3]. This attack works when the platform groups are linear. We show that in this case, contrary to the
common opinion (and some explicitly stated security assumptions), one does not need to solve the underlying
algorithmic problems to break the scheme, i.e., there is another algorithm that recovers the private keys without
solving the principal algorithmic problem on which the security assumptions are based. This changes completely
our understanding of security of these schemes. The efficacy of the attack depends on the platform group,
so it requires a specific analysis in each particular case. In general one can only state that the attack is in
polynomial time in the size of the data, when the platform and related groups are given together with their
linear representations. In many other cases we can effectively use known linear representations of the groups
under consideration. The braid groups are among them in view of the Lawrence-Krammer representation. The
monography [1] solves uniformly protocols based on the conjugacy search problem (Ko et. al. [4], Wang et. al.
[5]), protocols based on the decomposition and factorization problems (Stickel [6], Alvares et. al. [7], Shpilrain
and Ushakov [8]), protocols based on actions by automorphisms (Mahalanobis [9], Habeeb, Kahrobaei et. al.
[10], Markov, Mikhalev et.al. [11]), and a number of other protocols. In this paper we apply our method to the
double shielded key exchange protocols 1 and 2 proposed in [3].

Construction of a basis

Let V be a finite dimensional vector space over a field F with basis B = {v1,...,v,}. Let End(V) be
the semigroup of endomorphisms of V. We assume that elements in V' are given as vectors relative to B, and
endomorphisms in End (V') are given by their matrices relative to B. Let < W > denotes submonoid generated
by W.

For an endomorphism a € End(V) and an element v € V we denote by v* the image of v under a.
Also, for any subsets W of V and A of End(V) we put W4 = {w%w € W,a € A}, and denote by Sp(W) the
subspace of V' generated by W. We assume that elements of the field F' are given in some constructive form
and the «size» of the form is defined. Furthermore, we assume that the basic field operations in F are efficient,
in particular they can be performed in polynomial time in the size of the elements. In all the particular protocols
considered in this paper the field F' satisfies all these conditions.

There is an algorithm that for given finite subsets W C V and U C End(V) finds a basis of the subspace
Sp(W<U>) in the form {wf(l), . ,wf(t) }, where w; € W and a(i) is a product of elements from U.  Furthermore,
the number of field operations used by; the algorithm is polynomial in r = dimpz (V) and the cardinalities
|[W| and |U| of W and U, respectively.
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Using Gauss elimination one can effectively find a maximal linearly independent subset Ly of W. Notice

that Sp(LyV>) = Sp(W<U>). Adding to the set Ly one by one elements v®, where v € Ly,
a € U and checking every time linear independence of the extended set, one can effectively construct a maximal
linearly independent subset L; of Ly U LY which extends the set L. Notice that Sp(L5Y>) = =Sp(L;7Y>) and
the elements in Ly are of the form w®, where w € W and a = 1 or a € U. It follows that if Lo = Lq then Lg is a
basis of Sp(W<U>). If Ly # L, then we repeat the procedure for L; and find a maximal linearly independent
subset Lo of L1 U LY that extends L;. Keep going one constructs a sequence of strictly increasing subspaces
Lo < Ly <...<L;of V. Since the dimension r of V is finite the sequence stabilizes for some ¢ < r. In this case
L; is a basis of Sp(W<U>) and its elements are in the required form.

To estimate the upper bound of the number of the field operations used by the algorithm, observe first that
the number of the field operations in Gauss elimination performed on a matrix of size n x r is O(n?r). Hence it
requires at most O(n?r) steps to construct Lo from W, where n = |W| is the number of elements in W. Notice
that |L;| < r for every j. So to find Lj4, it suffices to perform Gauss elimination on the matrix corresponding
to L; U ng which has size at most r + r|U|. Thus the upper estimate on this number is O(r3|U|?). Since there
are at most r iterations of this procedure one has the total estimate as O(r3|U|? + r|W|?).

In this paper V is underlying linear space of a matrix algebra Mat,(F') of all matrices of size t X ¢ over F.
Let G be a subgroup of the multiplicative group of Mat;(F'), and A and B are two subgroups of G. Every pair of
elements a € A and b € B define an automorphism ¢(a, b) of V such that for every v € V one has v#(®%) = qub.
Let U be submonoid generated by all such automorphisms. Thus for every subset W C V one can effectively
construct a basis of subspace WV

The double shielded key exchange protocol 1 from [3]

At first we describe the protocol 1 from [3]. Recall that in [3] the Artin braid groups B,, were recommended
as platforms for the proposed protocols constructing.

In view of the Lawrence-Krammer representation of the braid group B,, we can assume that the group G
below is given as a linear group over a field F. So, we assume that G is a part of a finite dimensional vector
space V.

Alice and Bob agree on a non-abelian group G, and randomly chosen element h € G and two subgroups A
and B of G, such that ab = ba for any a € A and any b € B. We assume that A and B are finitely generated
and are given by the fixed generating sets {ay, ..., a,} and {b1, ..., b, }, respectively.

Alice chooses four elements ¢y, co,d1,ds € A, computes x = djcihcads and then sends x to Bob.

Bob chooses six elements f1, f2, 91,92, 93,94 € B, computes y = g1 fihfogs and w = g3 fi1xf394, and then
sends (y,w) to Alice.

Alice chooses two elements ds,dy € A, computes z = dzciycady and u = dj *wdy *, and then sends (z,u) to
Bob.

Bob sends v = g7 'zg5 ! to Alice.

Alice computes K 4 = dglvdgl = ¢y frhfoco.

Bob computes K = ggluggl = ¢y fihfaco which is equal to K4 and then K = K4 = Kp is Alice and
Bob’s common secret key.

Now we show how the common secret key can be computed. Let BzB be subspace of V generated by all
elements of the form fzg where f,g € B. We can construct a basis {e;zl;(e;,l; € B,i =1,...,7)} of BzB in a
polynomial time as it is explained in the previous section. Since v € Bz B, we can effectively write it in the form

T
v= Za(i)eizli, (1)
i=1

l

where a(i) € F for i = 1,...,r. In a similar way we construct bases {e;hl;(ej, ;€B,j=1,..,s)} of BhB, and

{e;wlg (e;,l; € B,k=1,...,q)} of BwB. Then we get presentations
y=> B(j)e;hl;, (2)
j=1

where 8(j) € F for j =1,...;s, and

" 1"

v(k)epwly, (3)

i
M=

b
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where y(k) € F for k=1,....,q
Now we swap w by u in the right hand side of (3). By direct computation we obtain

q a
Zy( k)epul, = Z'y ekd1 Ywdy U =d;t Z’y el,;wlk =dytwdy ' = cihey. (4)
k=1 k=1 k=1

Then we swap h by ciheg in the right hand side of (2) and get

> Bli)eserheal; = er(Y Bj)ejhl;)ea = eryea = cig1 frhfagacs. (5)

j=1 j=1
At last we swap z by ¢1g1 fihfagaca in the right hand side of (1) and get

T T

Za(i)eiclglflhfggg@li = dgl(z a(i)eizli)dgl = lelthCQ =K. (6)

i=1 i=1

The double shielded key exchange protocol 2 from [3]

Now we describe the protocol 2 from [3].

As before we assume that the group G below is given as a linear group over a field F'. So, we assume that
G is a part of a finite dimensional vector space V.

Alice and Bob agree on a non-abelian group G, and randomly chosen element h € G and two subgroups A
and B of G, such that ab = ba for any a € A and any b € B. We assume that A and B are finitely generated
and are given by the fixed generating sets {a, ..., a,} and {b1, ..., b, }, respectively.

Alice chooses four elements c1,d; € A and fs, g € B, computes & = dy fihods and then sends x to Bob.

Bob chooses six elements c¢s,do,d3 € A and f1,91,93 € B, computes y = g1 fihcads and
w = g3 fi1xceds, and then sends (y, w) to Alice.

Alice chooses two elements dy € A and g4 € B, computes z = dyc1yfog4 and u = dl_lwgz_l, and then sends
(z,u) to Bob.

Bob sends v = g; *zd, ! to Alice.

Alice computes K4 = d;lvggl. Bob computes Kp = gg_luds_1 = ¢y fihfoco which is equal to K4 and then
K = K, = Kp is Alice and Bob’s common secret key.

Now we show how the common secret key can be computed. Let BzA be subspace of V' generated by all
elements of the form fzd where f € B,d € A.

We can construct a basis {e;zl;(e; € B,l; € A,i =1,...,r)} of BzA in a polynomial time as it is explained
in the previous section. Since v € Bz A, we can effectively write it in the form

r

v = Za(i)eizli, (7)

i=1

where a(i) € F fori =1, ..

In a similar way we construct bases {e;hl;(e; € B, l.;- € A,j=1,..,8)} of BhA, and {e,wl, (e, €
€B,l, € A,k=1,....q)} of BwA.

Then we get presentations:

where 8(j) € F for j =1, ..., s, and

where y(k) € F for k=1,...,q
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Now we swap w by u in the right hand side of (9). By direct computation we obtain
q 1" " q 1" " q 17 "

> k)eguly =Y A (k)eds fwgy Ml = di (Y (K)egwly)gy = di togy !t = cihfa. (10)
k=1 k=1 k=1

Then we swap h by c¢1hfoin the right hand side of (8) and get

Zﬂ(i)e;clhﬁl; =) B(j)e;hly) fo = cryfo = c1g1frheada fo. (11)

j=1 j=1

At last we swap z by ¢1g1 f1heads fo in the right hand side of (7) and get

T T

Za(i)eiclglflh@dgfgli = dzl(z a(z)ezzll)gzl = lethQfQ =K. (12)

=1 =1

Two other, the shielded public key encryption protocol and the shield digital signature protocol in [3]
completely based on the protocols 1 and 2. They can be attacked by the procedures that has been just described.

The Lawrence-Krammer representation

Let B, denotes the Artin braid group on n strings, n € N, where N denotes the set of natural numbers.
R. Lawrence described in 1990 a family of so called Lawrence representations of B,,. Around 2001 S. Bigelow
[11] and D. Krammer [12] independently proved that all braid groups B,, are linear. Their work used new the
Lawrence-Krammer representations p, : By, — Gan(n,l)/Q(Z[til7 sT1]) that has been proved faithful for every
n € N. One can effectively find the image p,(g) for every element g € B,,.

Moreover, there exists an effective procedure to recover a braid g € B, from its image p,(g). It was shown
in [13] that it can be done in O(m?3logd;) multiplications of entries in p,(g). Here m = n(n —1)/2 and d, is a
parameter that can be effectively computed by p,,(g). See [13] for details.

Complezity of the proposed cryptanalysis

In this paper we proposed a polynomial time deterministic algorithm to recover secret; keys established
by the protocols 1 and 2 in [3]. We assumed that the group G in this protocols is linear. The authors of [3]
suggested that the infinite nonabelian groups B, with n > 12 can be taken as the platform groups for the
protocols 1 and 2 in [3]. By the Lawrence-Krammer representations the groups B,, are linear. Moreover, this
representations are effective computable and invertible. Unfortunately, in this setting the proposed protocols are
not secure. Our cryptanalysis in the above sections shows that the linear decomposition attack works effectively
in this case.

We present a cryptanalysis such that all used tools consist of only classical Gauss elimination process. It
is well known that the Gauss elimination process is a polynomial procedure. To estimate the upper bound of
the number of the field operations used by the algorithm, observe first that the number of the field operations
in Gauss elimination performed on a matrix of size n x r is O(n?r). Hence it requires at most O(n?r) steps to
construct Lo from W, where n = |W/| is the number of elements in W. Notice that |L;| < r for every j. So to
find L;1; it suffices to perform Gauss elimination on the matrix corresponding to L; U Lg-] which has size at
most r +7|U|. Thus the upper estimate on this number is O(r3|U|?). Since there are at most r iterations of this
procedure one has the total estimate as O(r®|U|? 4+ 7|W|?). When we derive solutions in (1)—(3) and in (7)—(9)
we can estimate the time complexity by a polynomial function depending of the dimension r of the space V'
and the parameter m = maz{|A|,|B|} as O(r3m?). With this estimation we can compute the secret keys in the
form of matrices. If the platform B, is given by an abstract presentation, we can use the Lawrence-Krammer’s
representation, and then its inverse. It was shown in [14] that both these procedures are polynomial in time.
Details can be found in [14].

Similar cryptanalysis can be applied to many other protocols based on (semi) groups presented as linear
(semi)groups. Moreover, in a number of other cases we can firstly transform our platform to the linear form,
and then apply our cryptanalysis. But in this latter case we should care about dimension of representation.
Moreover, we need in tractable inverse map. All such topics open new area of pure theoretical investigations
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in the representation theory. Fortunately, studying of algebraic algorithms with a point of view of its possible
practical application are led by many mathematicians. There are a lot of interesting and useful results in this
direction.

Supported by Russian Foundation for Basic Research, project 15-41-04312.
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B.A. PomanbkoB

Opimre HerizgeareH amiblK, KiJITi 6ap KOC MaHeabIiK
mudpaay xKyiieci yImiH MoJNHOMHUAJIIbI aJITOPUTM

Maxkanazma ambik KUITIEH KemepJsep mudpiay KyieciHae Heri3menreH KpUITOrpadusiiblK, TaJIgay VIIiH
aJITOPUTM YaKbIThl OOMBIHINA JETEPMUHJIIK MMOJIMHOMIBIK MPAKTUKAJBIK >KaHa JjoJjesgaeHerin Banra, Kcy,
JIu, JInn xone Bana «Double shielded public key eryptosystems» ycoiabLiast. ABrop miardopma OpHbIHA
B,, Apruna kemep rpymmnacbiH Kojganyra keHec 6epmi. OCbl XKYMBICTA ABTOPJBIH, YKYPri3reH ChI3bIKTHIK,
JIEKOMITO3HUITUSIBIK, OAFbITHI OeJTiKTereH oficke Heriznmesnren Jloypenc-Kpamep Tycinirine KaTbICTBI KEMeD
GejiHecine KosaHbLIbII Kepceriaren. Horuzkecinme [3] xarramara Herizjenren Koc GesliHreH Kinrrep Ta-
6bu1bl. By kirrrep omapapl aiikpia Typae ge Gescenai ecenreiimi. Ocbutaiima [3] xaTTamama ocasabrsn
OpHATBIJIFAH.
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IHoammEOMMAILHBII AJITOPUTM OJIA OCHOBaHHOI Ha KOCaX CUCTEMbI
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Mu@POBaAHUS C OTKPBITHIM KJIIOUOM JIBOITHOTO MIATA

B crarpe npemyioxken HOBBIN TOKA3yeMbIil TPAKTUIECKHI TE€TEPMUHUCTCKHM TOJTMHOMHUAJIBHBIN 110 BPEMEHN
aJrOPUTM JJIs1 KPUITOrPAMDUIECKOr0 aHAJIN3a, OCHOBAHHBIN Ha KOCAX CHCTEMBI NTU(PPOBAHUSI C OTKPBITHIM
kiitouoMm Bamnra, Kcy, JIu, Jlua n Banra «Double shielded public key cryptosystemss. PexomenmoBansr
HCIIOJIB30BAHUIO B KadecTBe 1y1ardopM rpymnmnbl koc Apruna B,,. [Tokasana, JiuHelHON JEKOMIIO3UITMOHHON
aTaKy, OCHOBAHHOI Ha METOJie PAa3JIOZKEHWsI, BBEJIEHHOM aBTODPOM, IIPUMEHMMOCTH K 00pa3aM KOC OTHOCU-
TeIbHO TpejcTaBienus Jloyperc-Kpamepa. B pesynbrare HalieHbI pa3/ieeHHbIe KIIOUYN B 000UX OCHOBHBIX
npoTokosax u3 [3]. Dtu xkmoun 3pHEeKTUBHO BEIYUCISIOTCS U B UX OPUTMHAIBHOM BHe. TeMm cambiM ycTa-
HOBJIEHA YSI3BIMOCTD IIPOTOKOJIOB U3 [3].
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