
UDC 512.54

V.A. Roman’kov

F.M. Dostoevsky Omsk State University, Russia
(E-mail: romankov48@mail.ru)

A polynomial algorithm for the braid double
shielded public key cryptosystems

We propose new provable practical deterministic polynomial time algorithm of cryptographic analysis for
the braid Wang, Xu, Li, Lin and Wang «Double shielded public key cryptosystems», where the authors
recommended the Artin braid groups Bn as platforms for proposed protocols. We show that a linear
decomposition attack based on the decomposition method introduced by the author works for the image
of braids under the Lawrence-Krammer representation by finding the exchanging keys in the both two
main protocols by Wang et. al. These keys can be effectively computed in their original form too. Thus the
protocols propоsed by Wang et. al. are vulnerable.
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Introduction

In this paper we discuss, following [1, 2], a new practical attack on the two main protocols proposed
in [3]. This attack works when the platform groups are linear. We show that in this case, contrary to the
common opinion (and some explicitly stated security assumptions), one does not need to solve the underlying
algorithmic problems to break the scheme, i.e., there is another algorithm that recovers the private keys without
solving the principal algorithmic problem on which the security assumptions are based. This changes completely
our understanding of security of these schemes. The efficacy of the attack depends on the platform group,
so it requires a specific analysis in each particular case. In general one can only state that the attack is in
polynomial time in the size of the data, when the platform and related groups are given together with their
linear representations. In many other cases we can effectively use known linear representations of the groups
under consideration. The braid groups are among them in view of the Lawrence-Krammer representation. The
monography [1] solves uniformly protocols based on the conjugacy search problem (Ko et. al. [4], Wang et. al.
[5]), protocols based on the decomposition and factorization problems (Stickel [6], Alvares et. al. [7], Shpilrain
and Ushakov [8]), protocols based on actions by automorphisms (Mahalanobis [9], Habeeb, Kahrobaei et. al.
[10], Markov, Mikhalev et.al. [11]), and a number of other protocols. In this paper we apply our method to the
double shielded key exchange protocols 1 and 2 proposed in [3].

Construction of a basis

Let V be a finite dimensional vector space over a field F with basis B = {v1, . . . , vr}. Let End(V ) be
the semigroup of endomorphisms of V. We assume that elements in V are given as vectors relative to B, and
endomorphisms in End (V ) are given by their matrices relative to B. Let < W > denotes submonoid generated
by W.

For an endomorphism a ∈ End(V ) and an element v ∈ V we denote by va the image of v under a.
Also, for any subsets W of V and A of End(V ) we put WA = {wa|w ∈ W,a ∈ A}, and denote by Sp(W ) the
subspace of V generated by W. We assume that elements of the field F are given in some constructive form
and the «size» of the form is defined. Furthermore, we assume that the basic field operations in F are efficient,
in particular they can be performed in polynomial time in the size of the elements. In all the particular protocols
considered in this paper the field F satisfies all these conditions.

There is an algorithm that for given finite subsets W ⊆ V and U ⊆ End(V ) finds a basis of the subspace
Sp(W<U>) in the form {wa(1)

1 , . . . , w
a(t)
t }, where wi ∈W and a(i) is a product of elements from U. Furthermore,

the number of field operations used by; the algorithm is polynomial in r = dimF (V ) and the cardinalities
|W | and |U | of W and U, respectively.
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Using Gauss elimination one can effectively find a maximal linearly independent subset L0 of W. Notice
that Sp(L<U>0 ) = Sp(W<U>). Adding to the set L0 one by one elements va, where v ∈ L0,
a ∈ U and checking every time linear independence of the extended set, one can effectively construct a maximal
linearly independent subset L1 of L0 ∪LU0 which extends the set L0. Notice that Sp(L<U>0 ) = =Sp(L<U>1 ) and
the elements in L1 are of the form wa, where w ∈W and a = 1 or a ∈ U. It follows that if L0 = L1 then L0 is a
basis of Sp(W<U>). If L0 6= L1 then we repeat the procedure for L1 and find a maximal linearly independent
subset L2 of L1 ∪ LU1 that extends L1. Keep going one constructs a sequence of strictly increasing subspaces
L0 < L1 < . . . < Li of V. Since the dimension r of V is finite the sequence stabilizes for some i ≤ r. In this case
Li is a basis of Sp(W<U>) and its elements are in the required form.

To estimate the upper bound of the number of the field operations used by the algorithm, observe first that
the number of the field operations in Gauss elimination performed on a matrix of size n× r is O(n2r). Hence it
requires at most O(n2r) steps to construct L0 from W, where n = |W | is the number of elements in W. Notice
that |Lj | ≤ r for every j. So to find Lj+1 it suffices to perform Gauss elimination on the matrix corresponding
to Lj ∪ LUj which has size at most r + r|U |. Thus the upper estimate on this number is O(r3|U |2). Since there
are at most r iterations of this procedure one has the total estimate as O(r3|U |2 + r|W |2).

In this paper V is underlying linear space of a matrix algebra Matt(F ) of all matrices of size t × t over F.
Let G be a subgroup of the multiplicative group of Matt(F ), and A and B are two subgroups of G. Every pair of
elements a ∈ A and b ∈ B define an automorphism ϕ(a, b) of V such that for every v ∈ V one has vϕ(a,b) = avb.
Let U be submonoid generated by all such automorphisms. Thus for every subset W ⊆ V one can effectively
construct a basis of subspace WU .

The double shielded key exchange protocol 1 from [3]

At first we describe the protocol 1 from [3]. Recall that in [3] the Artin braid groups Bn were recommended
as platforms for the proposed protocols constructing.

In view of the Lawrence-Krammer representation of the braid group Bn we can assume that the group G
below is given as a linear group over a field F. So, we assume that G is a part of a finite dimensional vector
space V.

Alice and Bob agree on a non-abelian group G, and randomly chosen element h ∈ G and two subgroups A
and B of G, such that ab = ba for any a ∈ A and any b ∈ B. We assume that A and B are finitely generated
and are given by the fixed generating sets {a1, ..., an} and {b1, ..., bm}, respectively.

Alice chooses four elements c1, c2, d1, d2 ∈ A, computes x = d1c1hc2d2 and then sends x to Bob.
Bob chooses six elements f1, f2, g1, g2, g3, g4 ∈ B, computes y = g1f1hf2g2 and w = g3f1xf3g4, and then

sends (y, w) to Alice.
Alice chooses two elements d3, d4 ∈ A, computes z = d3c1yc2d4 and u = d−1

1 wd−1
2 , and then sends (z, u) to

Bob.
Bob sends v = g−1

1 zg−1
2 to Alice.

Alice computes KA = d−1
3 vd−1

4 = c1f1hf2c2.
Bob computes KB = g−1

3 ug−1
4 = c1f1hf2c2 which is equal to KA and then K = KA = KB is Alice and

Bob’s common secret key.
Now we show how the common secret key can be computed. Let BzB be subspace of V generated by all

elements of the form fzg where f, g ∈ B. We can construct a basis {eizli(ei, li ∈ B, i = 1, ..., r)} of BzB in a
polynomial time as it is explained in the previous section. Since v ∈ BzB, we can effectively write it in the form

v =

r∑
i=1

α(i)eizli, (1)

where α(i) ∈ F for i = 1, ..., r. In a similar way we construct bases {e′jhl
′

j(e
′

j , l
′

j ∈ B, j = 1, ..., s)} of BhB, and
{e′′kwl

′′

k (e
′′

k , l
′′

k ∈ B, k = 1, ..., q)} of BwB. Then we get presentations

y =

s∑
j=1

β(j)e
′

jhl
′

j , (2)

where β(j) ∈ F for j = 1, ..., s, and

x =

q∑
k=1

γ(k)e
′′

kwl
′′

k , (3)
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where γ(k) ∈ F for k = 1, ..., q.
Now we swap w by u in the right hand side of (3). By direct computation we obtain

q∑
k=1

γ(k)e
′′

kul
′′

k =

q∑
k=1

γ(k)e
′′

kd
−1
1 wd−1

2 l
′′

k = d−1
1 (

q∑
k=1

γ(k)e
′′

kwl
′′

k )d−1
2 = d−1

1 xd−1
2 = c1hc2. (4)

Then we swap h by c1hc2 in the right hand side of (2) and get

s∑
j=1

β(j)e
′

jc1hc2l
′

j = c1(

s∑
j=1

β(j)e
′

jhl
′

j)c2 = c1yc2 = c1g1f1hf2g2c2. (5)

At last we swap z by c1g1f1hf2g2c2 in the right hand side of (1) and get

r∑
i=1

α(i)eic1g1f1hf2g2c2li = d−1
3 (

r∑
i=1

α(i)eizli)d
−1
4 = c1f1hf2c2 = K. (6)

The double shielded key exchange protocol 2 from [3]

Now we describe the protocol 2 from [3].
As before we assume that the group G below is given as a linear group over a field F . So, we assume that

G is a part of a finite dimensional vector space V.
Alice and Bob agree on a non-abelian group G, and randomly chosen element h ∈ G and two subgroups A

and B of G, such that ab = ba for any a ∈ A and any b ∈ B. We assume that A and B are finitely generated
and are given by the fixed generating sets {a1, ..., an} and {b1, ..., bm}, respectively.

Alice chooses four elements c1, d1 ∈ A and f2, g2 ∈ B, computes x = d1f1h2d2 and then sends x to Bob.
Bob chooses six elements c2, d2, d3 ∈ A and f1, g1, g3 ∈ B, computes y = g1f1hc2d2 and

w = g3f1xc2d3, and then sends (y, w) to Alice.
Alice chooses two elements d4 ∈ A and g4 ∈ B, computes z = d4c1yf2g4 and u = d−1

1 wg−1
2 , and then sends

(z, u) to Bob.
Bob sends v = g−1

1 zd−1
2 to Alice.

Alice computes KA = d−1
4 vg−1

4 . Bob computes KB = g−1
3 ud−1

3 = c1f1hf2c2 which is equal to KA and then
K = KA = KB is Alice and Bob’s common secret key.

Now we show how the common secret key can be computed. Let BzA be subspace of V generated by all
elements of the form fzd where f ∈ B, d ∈ A.

We can construct a basis {eizli(ei ∈ B, li ∈ A, i = 1, ..., r)} of BzA in a polynomial time as it is explained
in the previous section. Since v ∈ BzA, we can effectively write it in the form

v =

r∑
i=1

α(i)eizli, (7)

where α(i) ∈ F for i = 1, ..., r.
In a similar way we construct bases {e′jhl

′

j(e
′

j ∈ B, l
′

j ∈ A, j = 1, ..., s)} of BhA, and {e′′kwl
′′

k (e
′′

k ∈
∈ B, l′′k ∈ A, k = 1, ..., q)} of BwA.

Then we get presentations:

y =

s∑
j=1

β(j)e
′

jhl
′

j , (8)

where β(j) ∈ F for j = 1, ..., s, and

x =

q∑
k=1

γ(k)e
′′

kwl
′′

k , (9)

where γ(k) ∈ F for k = 1, ..., q.
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Now we swap w by u in the right hand side of (9). By direct computation we obtain

q∑
k=1

γ(k)e
′′

kul
′′

k =

q∑
k=1

γ(k)e
′′

kd
−1
1 wg−1

2 l
′′

k = d−1
1 (

q∑
k=1

γ(k)e
′′

kwl
′′

k )g−1
2 = d−1

1 xg−1
2 = c1hf2. (10)

Then we swap h by c1hf2in the right hand side of (8) and get

s∑
j=1

β(j)e
′

jc1hf2l
′

j = c1(

s∑
j=1

β(j)e
′

jhl
′

j)f2 = c1yf2 = c1g1f1hc2d2f2. (11)

At last we swap z by c1g1f1hc2d2f2 in the right hand side of (7) and get

r∑
i=1

α(i)eic1g1f1hc2d2f2li = d−1
4 (

r∑
i=1

α(i)eizli)g
−1
4 = c1f1hc2f2 = K. (12)

Two other, the shielded public key encryption protocol and the shield digital signature protocol in [3]
completely based on the protocols 1 and 2. They can be attacked by the procedures that has been just described.

The Lawrence-Krammer representation

Let Bn denotes the Artin braid group on n strings, n ∈ N, where N denotes the set of natural numbers.
R. Lawrence described in 1990 a family of so called Lawrence representations of Bn. Around 2001 S. Bigelow
[11] and D. Krammer [12] independently proved that all braid groups Bn are linear. Their work used new the
Lawrence-Krammer representations ρn : Bn → GLn(n−1)/2(Z[t±1, s±1]) that has been proved faithful for every
n ∈ N. One can effectively find the image ρn(g) for every element g ∈ Bn.

Moreover, there exists an effective procedure to recover a braid g ∈ Bn from its image ρn(g). It was shown
in [13] that it can be done in O(m3logdt) multiplications of entries in ρn(g). Here m = n(n − 1)/2 and dt is a
parameter that can be effectively computed by ρn(g). See [13] for details.

Complexity of the proposed cryptanalysis

In this paper we proposed a polynomial time deterministic algorithm to recover secret; keys established
by the protocols 1 and 2 in [3]. We assumed that the group G in this protocols is linear. The authors of [3]
suggested that the infinite nonabelian groups Bn with n ≥ 12 can be taken as the platform groups for the
protocols 1 and 2 in [3]. By the Lawrence-Krammer representations the groups Bn are linear. Moreover, this
representations are effective computable and invertible. Unfortunately, in this setting the proposed protocols are
not secure. Our cryptanalysis in the above sections shows that the linear decomposition attack works effectively
in this case.

We present a cryptanalysis such that all used tools consist of only classical Gauss elimination process. It
is well known that the Gauss elimination process is a polynomial procedure. To estimate the upper bound of
the number of the field operations used by the algorithm, observe first that the number of the field operations
in Gauss elimination performed on a matrix of size n× r is O(n2r). Hence it requires at most O(n2r) steps to
construct L0 from W, where n = |W | is the number of elements in W. Notice that |Lj | ≤ r for every j. So to
find Lj+1 it suffices to perform Gauss elimination on the matrix corresponding to Lj ∪ LUj which has size at
most r+ r|U |. Thus the upper estimate on this number is O(r3|U |2). Since there are at most r iterations of this
procedure one has the total estimate as O(r3|U |2 + r|W |2). When we derive solutions in (1)–(3) and in (7)–(9)
we can estimate the time complexity by a polynomial function depending of the dimension r of the space V
and the parameter m = max{|A|, |B|} as O(r3m2). With this estimation we can compute the secret keys in the
form of matrices. If the platform Bn is given by an abstract presentation, we can use the Lawrence-Krammer’s
representation, and then its inverse. It was shown in [14] that both these procedures are polynomial in time.
Details can be found in [14].

Similar cryptanalysis can be applied to many other protocols based on (semi) groups presented as linear
(semi)groups. Moreover, in a number of other cases we can firstly transform our platform to the linear form,
and then apply our cryptanalysis. But in this latter case we should care about dimension of representation.
Moreover, we need in tractable inverse map. All such topics open new area of pure theoretical investigations
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in the representation theory. Fortunately, studying of algebraic algorithms with a point of view of its possible
practical application are led by many mathematicians. There are a lot of interesting and useful results in this
direction.

Supported by Russian Foundation for Basic Research, project 15-41-04312.
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В.А. Романьков

Өрiмге негiзделген ашық кiлтi бар қос панельдiк
шифрлау жүйесi үшiн полиномиалды алгоритм

Мақалада ашық кiлтпен кемерлер шифрлау жүйесiнде негiзделген криптографиялық талдау үшiн
алгоритм уақыты бойынша детерминдiк полиномдық практикалық жаңа дәлелденетiн Ванга, Ксу,
Ли, Лин және Вана «Double shielded public key eryptosystems» ұсынылды. Автор платформа орнына
Bn Артина кемер группасын қолдануға кеңес бердi. Осы жүмыста автордың жүргiзген сызықтық
декомпозициялық бағыты бөлiктелген әдiске негiзделген Лоуренс-Крамер түсiнiгiне қатысты кемер
бейнесiне қолданылып көрсетiлген. Нәтижесiнде [3] хаттамаға негiзделген қос бөлiнген кiлттер та-
былды. Бұл кiлттер оларды айқын түрде де белсендi есептейдi. Осылайша [3] хаттамада осалдығы
орнатылған.
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Полиномиальный алгоритм для основанной на косах системы
шифрования с открытым ключом двойного щита

В статье предложен новый доказуемый практический детерминистский полиномиальный по времени
алгоритм для криптографического анализа, основанный на косах системы шифрования с открытым
ключом Ванга, Ксу, Ли, Лин и Ванга «Double shielded public key cryptosystems». Рекомендованы к
использованию в качестве платформ группы кос Артина Bn. Показана, линейной декомпозиционной
атаки, основанной на методе разложения, введенном автором, применимость к образам кос относи-
тельно представления Лоуренс-Крамера. В результате найдены разделенные ключи в обоих основных
протоколах из [3]. Эти ключи эффективно вычисляются и в их оригинальном виде. Тем самым уста-
новлена уязвимость протоколов из [3].
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